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FOREWORD

This study — describing the critical nature of selected blast-produced
injuries, the development of tentative biological criteria for different levels
of blast and other hazards, and the application of these criteria to nuclear
explosions — stemmed from prior research in two broad areas; namely, in-
vestigations concerning the Biological Effects of Blast from Bombs carried
out for the Defense Atomic Support Agency of the Department of Defense and
work dealing with Selected Aspects of Weapons Effects pursued for the Civil
Effects Branch of the Division of Biology and Medicine of the Atomic Energy
Commission. The material was presented before the National Preparedness
Symposium sponsored by the National Institute of Disaster Mobilization held
November 13-15, 1962 at the International Inn in Washington, D. C.

The data, incorporating a comparative assessment of the range-yield
relationship for selected '"immediate' hazards due to blast phenomena as well
as those due to nuclear and thermal radiation, are useful to persons —
military and civilians alike — who would develop a balanced understanding of
all the environmental variations which follow low- and high-yield nuclear
detonations. Since the range of each major biological effect scales differently
with yield and depends greatly upon the conditions of exposure, the relative
quantitation of casualty potential is far from a straightforward matter. Too,
because the biological criteria developed and employed were in many instances
the result of extrapolations of interspecies mammalian studies, they must be
used cautiously, regarded as tentative and subject to future refinement.
Finally, the material presented should be viewed as a ''sample'’ of the analyti-
cal fabric now available to help tie the source of nuclear-induced environmental
variations quantitatively together with various biological responses upon which
the assessment of different levels of hazard depends.
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ABSTRACT

The nature of certain critical lesions seen after exposure to air
blast was described and the early lethality characterizing primary
and tertiary blast damage was emphasized along with the seriousness
of injuries caused by blast-energized debris. Tentative criteria were
developed to the end that different levels of environmental variations
caused by blast phenomena could be quantitatively related to various
levels of biological response. Using the ''free-field" scaling laws and
a mathematical model whereby translational velocities could be computed
for animate and inanimate objects, the criteria were applied to nuclear
explosions ranging in yield from 1 kt to 100 Mt. Thus, it was possible
to specify, as a function of yield, the hazard ranges inside which various
blast injuries might occur. At these ranges the associated levels of
initial nuclear and thermal radiation were computed to allow at least
some assessment of the relative importance of all the major hazards
from nuclear detonations.

ii

o b R an R Do o

|
!

1y
P

S o R ST

B R S L




ACKNOWLEDGMENTS

Most of what is known today about blast and shock biology as it is related
to nuclear explosives stems from a continuous research effort initiated at the
Lovelace Foundation in 1952 under the support of the Medical Branch of the
Division of Biology and Medicine of the Atomic Energy Commission. Subse-
quently, both laboratory and full-scale field work have been underway. The
latter involved studies during the 1953, 1955 and 1957 test series at the Nevada
Test Site carried out undér the administrative direction of the Civil Effects
Test Group, whose director arranged for collaboration with several groups to
provide instrumentation and other support; namely, the Vitro Corporation of
America, the Sandia Corporation, the Ballistics Research Laboratory, and
the Naval Radiation Defense Laboratory. The field effort was funded by the
AEC with some participation by the Federal Civil Defense Administration and
the Armed Forces Special Weapons Project.

In 1959, for a year, the Defense Atomic Support Agency of the Department
of Defense joined the AEC's Division of Biology and Medicine in funding the re-
search in Blast Biology after which the DASA fully supported the effort. In
addition, the Civil Effects Test Branch has provided funds for work dealing
with Selected Aspects of Weapons Effects. It is with considerable gratitude
that the above sources of support are acknowledged along with the interest and
encouragement of the following individuals:

Dr. Shields Warren, who, when Director of the Division of Biology
and Medicine, had the foresight to initiate research in Blast Biology;

Subsequent chiefs of the Division of Biology and Medicine — Dr. John
C. Bugher and Dr. Charles L. Dunham — whose technical understanding helped
maintain continuity of the investigative effort;

Mr. Robert L. Corsbie, until recently the AEC's Civil Effects Test
Director and Chief of the Civil Effects Branch of the Division of Biology and
Medicine, and his assistant and now acting chief of the Civil Effects Branch of
DBM, Mr. L. Joe Deal, whose understanding and help has been unflagging;

General Robert H. Booth, Chief, DASA, Department of Defense and
his predecessor, Admiral Edward N. Parker, and the DASA Surgeons,

Captain John A. O'Donoghue, 1960-1962, and currently, Colonel Robert H. Holmes,
all of whom not only appreciated the complex nature of the investigative work, but
also lent critical support in expanding the research effort and maintaining funding

continuity.

The writers are also indebted to many other Lovelace Foundation personnel,
who have participated in the blast research; in particular the following individuals:

iii

N

{
¥
!
i
H
!
1

N e




Dr. Thomas L. Chiffelle, Head of the Department of Pathology;
Mr. R. V. Taborelli, Head of the Department of Engineering;
Mr. Ray W. Albright, Head of the Computer Section; and

Mrs. Mary E, Franklin, Physics Department

Specifically, in the preparation of this study, the authors wish to acknowl-
edge the help of Mrs. Mary E. Franklin who performed much of the analytical
work and assisted editorially; Mr. Robert A. Smith, Mr. George S. Bevil,
Mrs. Joyce Blaine and Mr. Emerson Goff who prepared the illustrative
material; Mrs. Maureen Gilmore, Mrs. Martha Mitchell and Mrs. Ruth Lloyd
who worked long hours typing and editing the manuscript.

Finally, the authors wish to express appreciation for the help and under-
standing of Mr. L. Joe Deal, Acting Chief of the Civil Effects Branch of the
Division of Biology and Medicine of the AEC, Colonel Robert H. Holmes, the
DASA Surgeon, and his assistant, Lieutenant Colonel William S. Mullins, the
Project Officer on the DASA contract, who not only arranged for the collabora-
tive participation of the Department of Defense and the Atomic Energy Commis-
sion in supporting the preparation of this study including all the analytical work
involved, but jointly participated in making pre-print material available to the
National Institute for Disaster Mobilization.

iv




INTRODUCTION

It is a pleasure to have this opportunity to speak about the conse-
quences of exposure to air blast which represents a potential hazard to
man because of damage due directly or indirectly to:

(1) The pressure pulse that emanates radially from an explosive
source;

(2) The high transient winds which accompany the pressure variations;
and

(3) Events which transpire during and after the interaction of these
phenomena with biological targets on the one hand and with materials com-
prising the immediate environment of exposure on the other. |

Thus, it is clear that biological blast hazards are among the immediate
or early effects of a nuclear detonation. Too, if the {ield is high, the
damage may extend over many tens of square miles. ! For the purpose of
this discussion, the effects may be divided as follows:

(1) Primary effects are those due to variations in environmental
pressure;

(2) Secondary effects are associated with the impact of debris ener-
gized by blast, shock, overpressure, wind and often gravity;

(3) Tertiary effects comprise injuries that occur as a consequence of
gross bodily displacement, and

(4) Miscellaneous effects are those associated with non-line-of-site
thermal phenomena due to hot'gases and dust and to blast-induced fires.

Those concerned with the environmental medical aspects of nuclear
blast must become interested in matters of considerable complexity. For
example, Table 1 in broad terms describes six problem areas that concern
those who would relate the magnitude of any given environmental variation
caused by a nuclear explosion with various levels of biological response.

It is necessary first to understand the uncertainties involved in "free-field"
scaling; i. e., how various effects vary over reasonably flat terrain with
yield, range, weapon design, burst conditions and weather. Second, the
fact that any ''free-field" effect may be attenuated, augmented or remain
unaltered as a consequence of the conditions of exposure needs be recog-
nized — so also must a third contingency; namely, that energy may be
transferred to animate as well as inanimate objects. Fourth, biophysical
interactions occur and energy is dissipated by or within biological media.
These biophysical factors relate to a fifth problem area wherein biological
response following exposure to various levels of single and multiple effects
must be studied if realistic hazards assessment is to be forthcoming; i. e.,
data are needed which specify safe levels of exposure and those associated
with performance decrement, injuries and different levels of lethality.




TABLE 1|

PROBLEM AREAS RELEVANT TO BIOLOGIC
EFFECTS OF NUCLEAR WEAPONS

e

Design
Source Yield "Free-field"

Burst conditions scaling

Range

Weather
Attenuation and Modification of ''free- "Geometric'
Augmentation field"" phenomena by scaling

geometric conditions

of exposure
Physical Engergy transfer to: Secondary
Interaction Physical objects and events

biological material ‘
Biophysical Energy dissipation by Etiologic 3
Interaction or within biologic mechanisms

targets 3
Biologic Major medical syndromes Hazard ]
Response Isolated individual effects assessment

and combined injury §
Biomedical Therapeutic and prophy- Casualty care f
Tasks U lactic measures Rehabilitation i

Protective pro-
cedures
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Sixth and last, certain other biomedical tasks are relevant; namely, thera-
peutic and prophylactic measures involving casualty care, rehabilitation
and the employment of feasible protective procedures.

Also, let it be clear that what is desired is knowledge about human
tolerance to blast exposure. As is the case with many situations involving
highly dangerous pathophysiological responses, one must rely heavily in
the blast area on extrapolations and interpolations of data collected during
studies of several mammalian species in the attempt to estimate quanti-
tative environmental parameters likely to be hazardous to man. In this
regard considerable data have become available over the past decade from
perusal of the literature and from investigations carried out in the labora-
tory as well as during full-scale nuclear test operations at the Nevada Test
Site.2-34 Among the many findings applicable to nuclear blast, three
groups of data are thought to be of interest to this audience. The assigned
time will be used to summarize these very briefly in a selective manner;
the discussion will include:

(1) The nature of the injuries which follow hazardous exposure to
nuclear blast;

(2) The development of tentative biological criteria whereby the
several environmental variations produced by blast may be associated
with arbitrarily chosen levels of biological response; and

(3) Application of these criteria for potential hazards to nuclear
weapons through use of the ''"free-field" scaling laws.

I. Nature of Blast-Induced Injuries

Mainly to emphasize the dangerous effects of exposure to air blast,
a few of the most important lesions of a critical nature will now be
summarized.

A. Primary Blast Effects

Characteristically, exposure to appropriate blast-induced vari-
ations in environmental pressure produce damage at or near the junctions
of tissues of different density. 17-18,20, 35-38 The air-containing organs
are special examples of this and lung damage can lead to events that are
quite critical as will be noted below.

1. Lethality-Time

Figure { shows the lethality-time data over 2 hrs for four mam-
malian species exposed to ""sharp''-rising overpressures utilizing a shock
tube. 27 Note that within 15 minutes, lethality was near 80 percent and
ranged between 90 and 100 percent at 1 hr. For one species studied ove
a 30-day, post-exposure period, about 90 percent expired in 1 day bv*
mortality continued up to the 17th day as noted in Figure 2.
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2. Thoracic Organs

The early lethality, typifying the primary blast effect, is
associated with damage to the lung and the sequelae therefrom. Massive
pulmonary hemorrhage ensues as can be seen by comparing Figure 3, a
normal lung, with Figure 4, a lung from an animal that expired from ex-
posure to nuclear blast in the entryway of an "'open'' shelter at the Nevada
Test Site. Also, air emboli enter the pulmonary circulation; they are
then carried to the heart and eventually reach various organs of the body
via the arterial circulation. Figure 5 shows air emboli in the coronary
vessels. A consequence is interference with the vascular supply to the
myocardium and acute failure of the heart may ensue, a fact that accounts
for the early demise of many cases exposed to blast overpressures.

Subsequent lethality is associated with continuing damage
to the heart from small multiple air emboli and poor pulmonary gas ex-
change. The latter may occur because of continued hemorrhage into or
edema of the lungs, a chain of events which may produce suffocation. Also,
air emboli can and do embarrass the functions of critical areas of the
central nervous system including the brain. Survivors of the acute chal-
lenge face the hazards of infective processes and the outcome is critically
dependent upcn bed rest, avoiding all exercise and the use of appropriate
therapeutic measures.

It is important to emphasize two additional points. First,
the primary blast lesion requires specialized therapy carried out by
appropriately trained personnel. Second, the nature of the damage and
the early lethality associated with serious exposures both support the
common sense conclusion that exposure to hazardous overpressures
should be ayoided if at all possible and even at considerable cost.

B. Secondary Blast Effects

Secondary missiles may produce various types of injuries in-
cluding fractures, concussion, lacerations or puncture wounds of body
organs and cavities. The seriousness of the trauma is determined by a
number of variables. Among them are: the mass, shape, character, and
velocity of the secondary missile; the angle of impact and the area and
organs of the body involved; and whether or not penetration of the skin and
body wall occurs. Many of these matters have been studied extensively
by those interested in war casualties and wound ballistics. 39 Certainly
many wounds caused by fast-moving debris can be acutely fatal. Too, pene-
trations into the serous cavities of the body are almost always accompanied
by serious infections, even if a nearby organ escapes critical damage. Like-
wise, extensive lacerations require proper care if wound suppuration is to
be avoided. In addition, fractures of the long bones and other parts of the
skeleton often require bed rest and expert care.

Thus, it is apparent that as far as secondary blast effects are con-
cerned, prophylactic measures calculated to avoid infections and preventive
procedures conceived to avoid or minimize exposure are matters worthy of
serious consideration. A glance at Figure 6 showing multiple lacerations

-6-
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of the face and neck of an individual injured in the Texas City disaster40 will,
I think, emphasize the point just made.

C. Tertiary Blast Effects

Damage from gross bodily displacement may occur during the
accelerative or decelerative phase of the experience. The seriousness
of the injury depends, among other things, upon the magnitude of the
accelerative or decelerative force, the time and distance over which
these act, the velocity attained, and the area and organ of the body trauma-
tized. In all probability, decelerative events represent the more important
hazard, and, with certain exceptions, impact with a hard flat surface is
likely to represent critical conditions at minimal velocities..

Lethality-Time Data

Though impact trauma has been studied over many years, few
efforts have been made to investigate mammalian response under con-
ditions wherein deceleration was almost instantaneous; i. e., only body
tissues governed the stopping distance and time. Such experiements were
performed several years ago and the time-lethality data obtained when
impact velocities were in the range to produce lethality within 24 hrs
proved to be significant. Figure 7 shows the data for 200 of 455 mammals
who failed to survive longer than 24 hrs following impact with a flat con-
crete surface at various velocities. Note that, as with primary blast ex-
posure, decelerative impact is a serious challenge to all species studied,
there being well over 70-percent lethality within 1 hr and over 90 percent
after 8 hrs.

The pathophysiologic causes for the demise of the four species
studied is not known with certainity, but, whichever proves to be the critical
organ or body system, it is quite clear that violent impact with a hard sur-
face is an experience to be avoided if at all possible.

II. Biological Criteria

Biological criteria for blast damage depend upon data which quanti-
tatively relate specific levels of biological response with different levels
of specified variations in the environment. The latter must be monitored
as near the location of exposure as possible. Enough information now
exists to establish tentative criteria for certain conditions arbitrarily
chosen to represent the several blast hazards. These will now be sum-
marized.

A. Primary Blast

Currently, it is clear that primary blast damage is largely a
function of the rate, character and magnitude of the pressure rise and
fall and the duration of the pulse. 6, 13,17, 18, 27, 28, 30, 32, 34, 41, 42
For classical wave forms — those rising almost instantaneously to a maxi-
mum and decaying exponentially with time — minimal overpressures prove
hazardous providing the pulse duration is beyond the critical duration.

-11-
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The latter is species dependent and represents that pulse duration shorter
than which the lethal or damaging pressure rises, and longer than which,
only the maximal pressure is the definitive parameter.

1. The Pressure-Duration Relationship

The above remarks are illustrated by tne data in Figure 8 for
six mammalian Zspecies exposed to ''sharp'"-rising pressures of various
pulse durations. 42" The experimental points and curves represent the
relationship between pulse duration and that maximal overpressure, which
on the average, will produce 50-percent lethality (Pgg). If interest is con-
fined to nuclear yields of near 1 kt or greater, only the right side of Figure 1
is applicable. This is so because for yields as low as 1 kt the pulseﬂuration
is as long as 90 - 150 msec for overpressures as high as 100 psi. *°

2. Extrapolation to the 70-kg Mammal

Using the 400-msec data shown in Figure 8, an extrapolation —
givenzgn Figure 9 —was performed to predict the P50 for the 70-kg mam-
mal.

3. Tentative Estimates for Man

Since one does not know whether man's tolerance to blast
overpressures of long duration lies above, on, or below the regression
line in Figure 9, it is currently necessary to set arbitrarily a range of
pressure within which adult human tolerance is likely to be. This was
recently done#? along with procedures calculated to show the predicted
lethality limits. The figures presented in Table 2 also give estimates
of the overpressure likely to represent the threshold of lung injury and
failure of the eardrum. The reader will note that the pressure values
are set forth as maximal incident overpressures assuming a geometry
of exposure that would and would not allow maximal pressure reflection;
e.g., a pressure of about 6 psi can reflect to 15 psi. This fact is signifi-
cant, as will be seen later, in the scaling range within which a given blast
effect may occur.

It is important to note that tolerance, even among mammalian
species, has not been studied in the very old or very young and that there
have been no systematic interspecies studies designed to obtain a more
refined estimate of the threshold for lung injury. Be this as it may, it
seems reasonable to believe that man's response will not differ widely
from that of other mammals. At least the figures at hand, tentative
though they may be and subject to future revision as additional data be-
come available, are currently the best that can be set forth.

4. General
Unfortunately tolerance for typical and atypical wave forms is

not the same. Investigations of biologic response to smoothly rising pres-
sures, 6, 7 oscillating pressures, 6 and those rising in a stepwise manneri3,

-13-
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TABLE 2

TENTATIVE CRITERIA FOR PRIMARY BLAST EFFECTS*

Related max pressure, psi

Critical organ Incident Incident
or event No reflection With reflection

Lung damage:+

Threshold 15 6.4
Lethality:

Threshold 30-42 12-15

50 percent 42-57 15-19

Near 100 percent 58-80 19-25

Eardrum failure:+
Threshold 5 2.3

*Applies to "fast''-rising overpressures of ""long' duration’
occurring at location of exposure.

+Data from WT-1179, TID-5764, WT-1467, WT-1470,
DASA 1242, 1245, 1246, 1271, and Richmond, DASA Project -
Unpublished.
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18,28,30, 32,41 5,¢ as yet incomplete. Though the P50 may be increased
by as much as 50 percent for smaller mammalian species, insufficient data
on larger species make it imprudent to formulate any estimates for the
human case.

B. Secondary Blast Effects

1. PenetratinLMiuiles

Some information concerning the wougding power of small
glass fragments is available from earlier studies.” Figure 10 shows the
missile-mass relationships as they determine the probability of piercing
the abdominal wall of animals (about 1 cm of skin and soft tissue). Using
such similar data, 3,21 it was possible to assemble the figures shown in
Table 3. A 10-gm glass fragment was arbitrarily established as a '"'sample”
criteria for penetrating missiles. As noted earlier, any penetration into a
serous cavity of the body will produce a serious wound and this can occur
in thin people if the velocity is in the ranges shown in the table.

It is unfortunate that similar kinds of data for sharp frangible
objects are not available for the eye. However, those interested are re-
ferred to the work of Stewart®” using steel cubes and spheres in a study
of the tolerance of the rabbit eye to missile impact.

2. Nonpenetrating Missiles

Data are available in the literature44-46 which allow tentative
criteria to be established for nonpenetrating missiles assuming that the
head is the critical organ. Though it may be that blows over the liver and
spleen are equally hazardous, relevant quantitative figures which would
establish the relative significance of head, liver or spleenic trauma appar-
ently must await the outcome of future studies. In the meantime, Table 4
contains the best available criteria based upon the impact of a blunt object
of 10 lbs, near the weight of the adult head of man.,

3. Tertiary Blast Effects

a. The Impact Study

The interspecies impact study mentioned previouslyzs

established the Vg5q — the impact velocity with a hard flat surface associ-
ated with 50-percent lethality* for four different mammalian species. The

*Lethality in 24 hrs was employed and the data apply to ventral
impact with a flat concrete surface onto which the subjects were dropped
from increasing heights.

-17-
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TABLE 3

TENTATIVE CRITERIA FOR SECONDARY BLAST EFFECTS*

Related velocity for
Critical organ 10-gm glass fragment
or event ft/sec

Skin laceration:

Threshold 50
Serious wounds:*

Threshold 100

50 percent 180

Near 100 percent 300

*Data from AECU-3350 and WT-1470.
+Figures represent impact velocities with unclothed
biological target.

-19-




e 3 T T———EET T T !

TABLE 4
TENTATIVE CRITERIA FOR SECONDARY BLAST EFFECTS .
Related impact

Critical organ velocity for 10-1b
or event object ft/sec

Cerebral concussion:¥
Mostly ""'safe" 10
Threshold 15

Skull fracture:*
Mostly ""safe" 10
Threshold 15 ‘
Near 100 percent 23

*Data from Lissner and Evans; Zuckerman and Black;
Gurdjian, Webster and Lissner.
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data are given in Figure 11 along with the regression curve that shows the
relationship between average body weight and the V50 velocity. Extension
of the curve to the 70-kg mammal allows one to predict a Vsg of 26 ft/sec
(18 mph). ,Other procedures yielded values of about 20 ft/sec (14 mph)
for the V)~ velocity and 30 ftf:ec (21 mph) for the V99 velocity. *

b. Tentative Estimates for Man

The possible application of such findings to helg gueu
human tolerance to abrupt impact has been discussed elsewhere. In-
cluded was a review of pertinent and helpful human data. Only three
matters will be noted here.

First, Swearingen et al., 47 in experiments with human
volunteers, reported that impact at 10 ft/sec was tolerated by subjects
both in the sitting and standing position. Second, with the possible ex-
ception of the liver and spleen, the head appears to be the hug&an organ
with the lowest tolerance to impact. Third, Gurdjian et al., ** using human
material, determined the relationship between impact velocity and the in-
cidence of skull fracture. Table 5 was assembled from this study. Note
that the threshold for skull fracture proved to be about 13 ft/sec (9 mph),
the 50-percent value close to 18 ft/sec (13 mph) and that fractures were
reported in 100 percent of cases at velocities equal to or above about
23 ft/sec (16 mph).

Such data allow one to suggest tentatively that
(a) 10 ft/sec is a "'safe" impact velocity for the adult human, and
(b) the skull-fracture data be adopted as one criteria of hazard for
tertiary blast effects. It is true that this is a conservative approach
and may overemphasize the hazard from impact since it assumes that
the head is the only organ one should consider.

Obviously if the head escapes injury during an uncon-
trolled impact with an unyielding surface, other criteria are needed: For
such an eventuality, it is suggested that the extrapolated figures of 20, 26
and 30 ft/sec (14, 18 and 21 mph) for 1-, 50- and 99-percent lethality
obtained from the interspecies impact study be tentatively adopted. The
authors are aware of the many uncertainties involved, but nothing more
reliable seems to be currently at hand.

Table 6 summarizes the figures discussed above and
sets forth specified biological response in relation to relevant velocities
of impact with a hard flat surface. It is of interest to point out that the
lethality and skull-fracture figures have an interesting parallel with a

*The velocity associated with near 1-percent lethality.
+The velocity associated with near 100-percent leth:{ity.
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TABLE 6

TENTATIVE CRITERIA FOR TERTIARY BLAST EFFECTS

Related impact

Critical organ velocity
or event ft/sec*
Total bocly:+
Mostly ""'safe'’ 10
Lethality threshold 20
Lethality 50 percent 26
Lethality near-100 percent 30
Skull fracture: "
Mostly ''safe'’ 10
Threshold ' 13
50 percent 18
Near 100 percent 23

*Applies to uncontrolled impact with a hard, flat surface.
+Data from DASA 1245; Swearingen, McFadden, Garner and
Blethrow; Zuckerman and Black; Gurdjian, Webster and Lissner.
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""real-life'' situation; namely, urban automobile fatalities as reported by
DeHaven.4® These show 40-percent lethality to be associated with estimated
vehicular sgeeds of 20 mph or less (29 ft/sec) and 70-percent lethality with
speeds o mph or less (43 ft/sec). Though the figures do not necessarily
apply to abrupt impact or specify the actual velocity at which body impact
occurred, they do fix an upper limit. In all probability, the correspondence
between the figures from the interspecies extrapolation and from the auto-
mobile accidents represents more than a happenstance.

4. General

A few general observations covering the criteria set forth above
are in order. First, any biological criteria estimating human tolerance
from mammalian interspecies studies must be used cautiously; there are
uncertainties related to (a) how much human response "in truth'" may vary
from the mammalian ""average, ' and (b) what the intraspecies variation may
be for man at any specified age, including the very young and the very old.

Second, the criteria attempt to establish a quantitative relation-
ship between biological response and a measurable environmental variation.
It needs be quite clear that this variation or '""dose'' refers to conditions
exis.ing very close to any exposed subject and not at a distance; i.e., not
outdoors if the individual is indoors, and not in the middle of a room if the
person is exposed against a wall.

Finally, the criteria set forth in Tables 2 through 6 jxe Fgrﬂy
extensions and modifications of similar data published elsewhere, " * ¢4 28
That they are, in some instances, different from previous estimates should
not be surprising. The current figures are still tentative and no doubt will

be updated periodically in the future as investigative research efforts reveal
new and applicable data.

111. Applications to Nuclear Explosions

A. General

Though there are uncertainties in the areas of biological response
and hazards assessment, there may indeed be greater variabilities involved
in attempting to relate such information to nuclear explosions. Even so,
such an exercise is instructive, and it is helpful to consider a number of
relevant eventualities. First, it is possible to proceed assuming that the
scaled '"free-field" effects parameters might approximate the environmental
variations at least for certain exposure conditions; i. e., blast parameters
obtained by "free-field'" scaling are assumed to be unmodified by the geometry
of exposure. Said another way, it is assumed that geometric scaling is not
necessary. Even though this may be unrealistic, it represents an essential
initial step, and interested and qualified individuals might later modify the
analysis according to the dictates of geometric scaling.

Second, in some cases simple geometric scaling will be employed
to help set range limits for certain hazards. For example, if one assumes
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an exposure condition permitting maximal reflection of overpressure, all
other factors constant, this would tend to maximize the range over which
a relevant effect might occur.

Third, the comparative assessment of hazards associated with
exposure to blast phenomena and those due to ionizing and thermal radiation
should always be kept in mind. It only makes common sense to contemplate
survival as a stepwise process requiring plans to do those things first that
assure survival for milliseconds, then seconds, minutes, hours and days,
etc. A progression of this thinking — which ""says' (a) do first what is
necessary to avoid the most far-reaching immediate effect, then (b) re-
assess the problem and (c) repeat the process — soon allows one to know
that eventually a great deal of attention must be paid to the interrelations
of the major effects which occur at close range. As will be seen, this in-
cludes all the potential blast hazards.

Fourth, as will be noted briefly below, considerable data are now
available to help assess the translational potential of blast phenomena for
missiles and man, and therefore a helpful contribution can be set forth in
the problem area termed ""'Secondary Events' in Table 1.

B. Translational Data

It was evident years ago that work should be carried out to estab-
lish a relationship between ''free-field' blast parameters and the aero-
dynamic characteristics of objects that might be displaced, be they sticks,
stones, frangible materials, or man. As early as 1954, plans were under-
way to determine theoretically and empirically what the translational
velocities might be as functions of yield, range, and distance of travel*
for objects having various areas, masses and drag coefficients.

During the 1955 and 1957 test series over 20, 000 missiles were
tra%%ed in a way that allowed their impact velocities to be determined3: 4
22, under a variety of exposure conditions for explosive yields that
ranged from about 10 to 40 kt. Also the translation of anthropometric
dummies was studied. 14 A mathematical model was designed using the
empirical data as a guide.. The model is now available for predicting the
translation of objects as tiny as small slivers of glass and as large as
adult man. 23, 24 Though the model only applies strictly to ideal wave forms
and only has been validated empirically for 10- to 40-kt yields, it never-
theless allows one to tie translational data known to be biologically hazard-
ous to blast parameters which in turn can be related to explosive yield and
range through the scaling laws.

o oneaemes
.

*Distance of travel refers to the blast-induced translation of an object.
It is important because in gaining velocity an object moves over a finite

distance in a finite time. Hence, velocity achieved — up to a maximum —
increases with both translational distance and time.
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C. Prediction of Potential-Hazards Ranges

Examples will now be presented in detail making use of the
analytical criteria previously mentioned and the "free-field" scaling laws.
Initially, and except where noted, this exercise will be limited to a 20-Mt
surface burst at sea level.

1. Primary Blast

For the 20-Mt surface burst, Table 7 shows the ranges over
which specified primary blast hazards might be expected. ''Safe'’ distances
are noted as well as the range inside which eardrum failure, lung damage
and lethality might occur. Also, the table shows the levels of initial nuclear
and thermal radiation that can be predicted for the ranges shown using the
"free-field" scaling laws. Thermal fluxes were computed in duplicate, one
series for a 50-mi, the other for a 10-mi visibility,

It is evident that the potential for primary blast damage to
personnel may extend as far from ground zero as 7 to 12 mi for the ear,
4 to 7 mi for lung injury, and 3 to 5 mi for lethality, depending upon whether
the conditions of exposure do or do not allow maximal reflection of the 'free-
field" incident overpressure.

2, Secondary Blast

Table 8 similarly sets forth the predicted ranges inside of which
10-gm glass fragments* would have the specified velocities and, hence, might
produce the noted secondary blast hazards. The procedures used assumed
that a given structure faced the blast wave and that the overpressures would
undergo reflection; the range data were so computed. This was done because
the Nevada experience showed frangible material mounted in the wall of ex-~
posed structures behaved in accordance with the reflected pressure and not
as material mounted in the open. Also, it must be pointed out that the cal-
culations were made arbitrarily for a translational distance of 10 ft. Data
available, however, allow computations for other desired distances 6f missile
travel as well as for other types of debris providing the acceleration coefficient
is known or can be determined.

It is evident that the range for possible injury from missiles
reaches out to 20 mi, a distance much greater than the most far-reaching pri-
mary blast hazard — ear damage at 12 mi. The latter, however, is about
the same as is the maximal range of 12 mi for the threshold of serious pene-
trating wounds due to missiles.

Table 9 presents range data and related effects parameters for
the criteria applicable to injury from the impact of a 10-1b blunt object with

*Applies to double-strength window glass,
+Acceleration coefficient, a =22 . C4; A = area presented to the wind;
m = mass; Cd = drag coefficient, ™
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the human head. It is clear that within a range of 16 mi the potential
exists for this type of secondary blast injury.

3. Tertiary Blast

a. 20-Mt Surface Burst at Sea Level

The ranges for the various potential hazards from dynamic
decclerative impact and the other associated effects parameters are set
forth in Table 10 for the 20-Mt surface burst at sea level. Velocity compu-
tations were made for a translational distance of 10 ft. The acceleration
coefficient employed was 0.03 £t2/1b which applies to an average adult man
in random orientation. This happens to be a figure between the acceleration
coefficient for an individual exposed face-on and side-on to the blast wave.
Note that the mostly ''safe’ range is as far as 14 mi from ground zero. Much
inside this distance, the incidence of impact injury can be expected to rise.

b. Maximizin&Burst Heights - 20 Mt

As an example of how variation in the burst height might
influence the prediction of the hazard range, Table 11 was prepared. Com-
putations were made for those burst heights which would maximize the range
of the overpressures associated with the specified translational velocities.
Translational distance was "fixed" at 10 ft. The associated nuclear- and
thermal-radiation data were scaled on a slant-range basis, but corrected
to the ground range shown.

For the "maximizing" burst condition the mostly "'safe'
range is predicted to be 25 mi from ground zero, 11 mi farther than for the
surface burst. It is interesting also to point out that the burst conditions
which maximize the ranges of the tertiary blast hazards tend to lower the
""free-field'' levels of both nuclear and thermal radiation. A comparison of
the last two columns of Tables 10 and 11 show that thermal fluxes may de-
crease two to fourfold.

c. The Velocity Displacement Relationship — Sea-Level
Burst of 20 Mt

Placing a constraint of 10 ft upon displacement distance,
as was done in the computations noted above, does not allow full appreciation
of the displacement potential of the long-duration blast winds associated with
high explosive yields. To illustrate better the possible human hazard, Fig-
ure 12 was prepared showing the displacement velocity as a function of dis~
tance of travel for specified overpressures applicable to a 20-Mt yield
exploded at the surface at sea level. It is clear that distances of travel be-
tween about 100 and 1000 ft are required before maximal velocities of between
about 15 and 500 ft/sec would be reached for overpressures varying from 1.5
to 25 psi.

Figure 12 is also useful in another way; it allows one to
contemplate displacement hazards in terms of the dimension of work space
or in terms of distance from a decelerating surface such as a wall. For
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example, only a foot of travel is required to reach the skull-fracture thre:
hold of 13 ft/sec if the overpressure is between 5 and 6 psi. The associate
range for these overpressures is about 6.8 to 7.5 mi.

4. Summary of Comparative Effects Data for 20-Mt Sea-Level
Surface Burst

It is instructive to study the blast-hazard data for the 20-Mt
sca-level surface burst as a function of increasing range from ground zero
This allows a comparative perspective to be developed which is more mear
ingful if other effects parameters also are included as has been done in
Table 12. From top to bottom, the figures in the range column show pro-
gressively increasing ranges inside of which the specified biological effect
or event can be expected. Data from The Effects of Nuclear Weapons! wei
used to scale the crater and fireball radii and the ranges for initial nuclea
anu thermal radiation. The nuclear-radiation threshold dose was assumed
to be 100 rems for emergency conditions. Thermal radiation was compute
for 10- and 50-mi visibilities; 4 and 10 cal/cm? were used as the values
associated, respectively, with first- and second-degree burns of the expos
white skin.

Table 12 illustrates very well the fact that primary, seconda:
and tertiary blast effects may produce injury over considerable ranges fro
ground zero. Their relative importance compared with thermal and initia!
nuclear radiation also is indicated, but in reality assessment needs be ma
in terms of exposure conditions. For example, lethality threshold for pri
mary blast may range from 3 to 5 mi from ground zero. At these distance
initial ionizing radiation apparently would be no problem even if the scaled
doses were increased by factors of 10. Thermal fluxes, however, might
range from 380 to 1400 cal/cm?, which could or could not represent an
immediate hazard to personnel depending upon conditions of exposure.

Definitive information regarding relevant geometric scaling i
not at hand. It is not, however, just academic to note two things: First,
the Nevada Test Site in 1957, mammals were recovered from underground
closed shelters located 840 ft (0. 16 mi) from a 700-ft tower on which a 43.
burst was detonated. The slant range, about 0.2 mi, is about equal to the
predicted m?ximal fireball radius. There were no thermal problems insic
the shelter. 19,49

Second, living mammals were recovered in 1955 and 1957
from underground structures tested with open entryways.®: 16 In one in-
stance the "free-field" thermal fluxes were well over 500 cal/cm2. The
majority of the species exposed exhibited only mild singeing of the fur, th
those located close to the main entryway were severely burned, apparentl
hot gases and dust carried into the structure by the blast wave. Though tt
matters are little understood, 30-52 it is clear that considerable thermal I
tection from direct thermal radiation can occur at certain locations inside
appropriate structures even if they are open at burst time,
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COMPARATIVE BIOLOGICAL EFFECTS AS A FUNCTION OF RANGE
FOR 20-MT SURFACE BURST AT SEA LEVEL

TABLE 12

Maximum Initial Thermal radiation
~incident nuclear 50-mile 10-mile
Biological event Range overpressure radiation* visibili visibilitx
or effect mi psi rems cal/cm cal/ecm

Crater: inside radius, 7 5 5

dry soil .33 > 200 > 10 > 10 > 10
Crater: outside radius, 7

dry soil .65 > 200 > 10 3900 3000
Initial nuclear radiation:

injury, threshold 2.4 50 100 2300 1800
Fireball radius, maximum 2.6 42 23 1900 1500
Primary blast: lethality,

threshold — without pres-

sure reflection 3.0 30 2.5 1400 1100
Lung damage, threshold —

without pressure reflection 4.2 15 <1 700 500
Primary blast: lethality,

threshold — maximum .

pressure reflection 4.7 12 <1 540 380
Lung damage, threshold —

maximum pressure

reflection 6.6 6.4 <1 260 180
Eardrum failure, thres-

hold — without pressure

reflection 1.5 5.0 <1 200 130
Impact injury: lethality,

threshold? 9.6 3.3 <1 110 72
Eardrum failure, thres-

hold — maximum pres-

sure reflection 12 2.3 <1 70 42
Impact injury: skull frac-

ture, thresholdt 12 2.3 <1 70 42
Serious wounds from 10-gm

glass fragments, threshold* 12 2.3 <1 70 42
Impact injury, threshold?t 14 1.8 <1 49 28
Skin lacerations from 10-gm

glass fragments, thresholdt 20 1.0 <1 21 11
Skin burns — second degree,

10-mi visibility 21 0.95 <1 10
Skin burns — second degree,

50-mi visibility 28 0.64 <1 10
Skin burns —first degree,

10-mi visibility 29 0.60 <1 4
Skin burns —~ first degree,

50-mi visibility 41 0.37 <1 4
Window glass fails 130 0.1 <1 <] <1

#*Computed for an air-density ratio, p/po. of 1.0,

+After 10 ft of travel.
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5. The Range-Yield Relationship for Biological Blast Effects

To further illustrate the application of the biological blast cri-
teria to nuclear explosions, charts were prepared showing the range-yield
relationship for each blast effect.

a. Primary Blast

For example, Figure 13 graphically presents the primary
blast data for sea-level surface bursts for yields ranging from 1 kt to 100 Mt.
The bottom four curves show range as a function of yield for the indicated
incident overpressures assuming no pressure reflection. The top four curves
give the same data except that maximal reflection of overpressure was
assumed; e.g., 2.3 psi will reflect to 5 psi, 6.4 to 15 psi, etc.

b. Secondary and Tertiary Effects

Figures 14 and 15 similarly show the ranges inside which
the indicated missile and displacement hazards, respectively, can be expected
for sea-level surface bursts varying in yield from 1 kt to 100 Mt.

c. Comparative Threshold Data

Using the threshold criteria for eardrum failure, for lung
injury (both with and without maximum pressure reflection), for skin lacera-
tions, and for gross body impact, Figure 16 was prepared to illustrate how
the comparative ranges of the several blast effects vary with explosive yield.
It is clear from the different slopes of the curves that the relative ranges for
the different blast effects vary significantly with yield. This is particularly
evident for the displacement data for man.

Finally, Figure 17 allows one to assess, on the "free-
field" basis at least, the range-yield values for initial nuclear and thermal
radiation compared with the most far-reaching as well as the most significant
blast effects. Only three comments will be offered here.

First, the data indicate that even for explosive yields as
low as 10 kt, secondary and tertiary blast effects have a very important
casualty potential. Second, for yields above 100 kt, primary, secondary
and tertiary blast effects are comparatively quite significant.

Third, for yields of 1 Mt and above, all blast effects are
strong competitors for the attention of perceptive individuals interested in
the relative hazards from all the major weapons effects. Indeed, for persons
exposed indoors and shielded from direct thermal radiation, secondary and
tertiary blast effects almost certainly represent the major causes for early
lethality and serious injury from nuclear explosions. Further — and in fact
particularly at the closer ranges — primary blast damage, embodying an un-
equivocal and highly dangerous capability for producing acute death, also
deserves the highest respect by all responsible persons who would achieve a
sound and balanced appreciation of the biological effects of nuclear weapons.
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1957 of buried structures 25 245 psi, 53 the design of underground shelters
exposed in 1957 at 170 psi®’ from which living mice were recovered, the
successful performance in 1955 of buried shelters at about 90 psi, ?“ the
recovery in 1955 of living mammals from a modification of these employed
without doors to study blast effects, ® and biological experiments in 1953 in-
dicating survival in buried long-tubular structures of simple design and with
open entryways at about 15 psi.

These and other data indicate that protection against blast — indeed
against all major weapons effects — is technically feasible at least at the 200
psi level. This statement is written knowing full well that the 200 psi range
irom a 20 Mt sea-level surface burst is about 1, 3 mi, * a distance outside
the scaled crater lip at near 0.7 mil and inside the maximal fireball radius

of 2.6 mi.

In closing I wish to quote an appropriate passage from a paper published
a few years ago:

"Last but with equal simplicity, those who contemplate the
physics and biology of blast effects and succeed in relating
such information to modern, large-scale explosives, will
know that prevention and prophylaxis comprise the course
of sagacity. Too, those who have used vaccination along
with epidemiologic and sanitary principles in support of
sound clinical care to save the sick and gain long term con-
trol of communicable disease, understand the impact of
knowledge and action contrasted with the futility of hoping a
given epidemic would just disappear. Nuclear explosives
are with us today and will not just disappear. The world
after 1945, the year the first atomic explosion occurred in
New Mexico, is not the same as it was before. Times have
changed. So also must the habits of man. Even now the
future is measuring the adaptability of people and societies
the world over. For sure, only the most flexible will
survive., "
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SUMMARY

A summary of the material presented in this communication follows:
1. By way of introduction it was pointed out that:

(a) Air blast could be hazardous because of injuries due directly
or indirectly to blast pressures, winds and the interaction of these phenom-
ena with animate objects and with materials comprising the exposure
environment;

(b) Biological blast effects were divided into the following cate-
gories; primary effects due to variations in environmental pressure;
secondary effects due to the impact of blast-energized debris; tertiary effects
that occur as a consequence of gross bodily displacement; and miscellaneous
effects encompassing exposure to dust, non-line-of-sight thermal phenomena
such as hot gases and debris and blast-induced fires;

(c) Interested individuals who would think about biological effects
of nuclear weapons should direct attention to several problem areas; viz.,
"free-field'" and geometric scaling, secondary events, etiologic mechanism,
biological response and hazards assessment and biomedical tasks;

(d) The objectives of the presentation would be selectively limited
to a discussion of the nature of blast-produced injuries, the development of
criteria for different levels of biological response and the application of
these criteria to nuclear explosions.

2. Primary blast damage to the lung was noted as an outstanding criti-
cal lesion responsible for subsequent development of arterial air emboli,
pulmonary hemorrhage and edema and the rapid and high lethality character-
istic of the primary blast syndrome. Also, it was noted that lethality can
be delayed as long as 17 days in mammals.

3. That damage from penetrating and nonpenetrating blast-energized
missiles was in many ways similar to war wounds from fragments and pro-
jectiles was pointed out, as was the serious nature of penetrations into
serous cavities or injuries to critical organs, which in the latter case might
be rapidly fatal.

4. Although tertiary blast damage associated with whole-body displace-
ment might occur from accelerative or decelerative events, the overriding
importance of the latter was noted. Interspecies mammalian studies of the
effects of impact with a hard surface were described to illustrate that rapid
and early lethality also characterizes the impact syndrome.

5. The unequivocal and highly dangerous character of blast-produced
lesions and the need for timely and expert medical care were cited to empha-
size the desirability of avoiding, preventing or sharply minimizing blast
injuries.
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6. Tentative biological criteria applicable to blast-produced events
occurring very close to a human target were set forth as follows:

(a) For want of data applicable to atypical wave forms, the pri-
mary blast criteria were limited to typical '"fast''-rising overpressures
of long duration. They were:

Eardrum failure threshold 5 psi
Lung damage threshold 15 psi
Lethality threshold 30-42 psi
Lgthality near 50 percent 42-57 psi
Lethality near 100 percent 58-80 psi

(b) Secondary blast criteria were arbitrarily established for a
10-gm glass fragment and a 10-1b blunt object impacted with the head.
They were:

Penetrating missiles

Skin-laceration threshold 50 ft/sec
Serious -wound threshold 100 ft/sec
Serious wounds near 50 percent 180 ft/sec

Serious wounds near 100 percent 300 ft/sec

Nonpenetrating missiles

Mostly '"safe' 10 ft/sec
Concussion threshold 15 ft/sec
Skull fracture threshold 15 ft/sec
Skull fracture near 100 percent 23 ft/sec

(c) Tertiary blast criteria were arbitrarily established for decel-
erative impact with a hard flat surface involving the head and the whole body.
They were:

Mostly "safe" 10 ft/sec
Skull fracture threshold 13 ft/sec
Skull fracture near 50 percent 18 ft/sec
Lethality threshold (whole body) 20 ft/sec
Skull fracture near 100 percent 23 ft/sec
Lethality near 50 percent

(whole body) 26 ft/sec
Lethality near 100 percent

(whole body) 30 ft/sec
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7.

velocities of different objects.
displacement distances of 10 ft in all but noted instances.

The criteria were applied to nuclear explosions through use of the
"free-field" scaling laws and employment of a recently developed mathe-
matical model for predicting from blast parameters the translational

Translational velocities were computed at

The predicted

maximal ranges inside which the specified biological blast effects could be
expected were computed for a 20-Mt sea-level surface burst. These ranges

were:

8.

Skin laceration threshold

Impact injury mostly '"'safe'

Serious missile wound threshold
Impact injury, skull fracture threshold

Eardrum failure threshold (maximum
pressure reflection)

Skull fracture near 50 percent

Impact injury, lethality threshold
(whole body)

Skull fracture near 100 percent
Impact lethality near 50 percent
Impact lethality near 100 percent

Eardrum failure threshold (no pressure
reflection)

Lung damage threshold (maximum
pressure reflection)

Primary blast lethality threshold (maximum
pressure reflection)

Lung damage threshold (no pressure
reflection)

Primary blast lethality near 100 percent
(maximum pressure reflection)

Primary blast lethality threshold
(no pressure reflection)

Primary blast lethality near 50 percent
(no pressure reflection)

Primary blast lethality near 100 percent
(maximum pressure reflection)

20 mi
14 mi
12 mi

12 mi

12 mi

10 mi

9.6 mi
9.0 mi
8.4 mi

7.8 mi

7.5 mi

6.6 mi

4. 7T mi

4.2 mi

3.0 mi

3.0 mi

2.6 mi

2.2 mi

To illustrate how much burst height could increase the range of
blast effects, computations using the tertiary blast criteria were made for
a 20-Mt explosion burst at those heights that would maximize the ground
range of these blast effects; the comparative figures were:
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Maximizing Surface

burst burst
heights sea level

Impact injury mostly ''safe'’ 25 mi 14 mi
Skull fracture threshold 2l mi 12 mi
Skull fracture near 50 percent 17 mi 10 mi
Impact lethality threshold (whole body) 16 mi 9.6 mi
Skull fracture near 100 percent 15 mi 9.0 mi
Impact lethality near 50 percent

(whole body) 14 mi 8.4 mi
Impact lethality near 100 percent

(whole body) 12 mi 7.8 mi

9. Graphic data were presented for the 20-Mt sea-level surface burst
to show how man's displacement velocity increases with translational dis-
tance. In approximate numbers the data were:

Associated
Displacement Velocity maximum Range
distance in overpressure in
ft ft/sec psi mi
1 3.4-19 1.5-25 16-3.3
10 9-150 1.5-25 16-3.3
100 14-350 1.5-25 16-3.3
120 15 (max) 1.5 16
180 27 (max) 2.2 13
300 55 (max) 3.7 -9
425 100 (max) 5.9 6.9
600 160 (max) 8.8 5.6
850 300 (max) 14.7 4.3
1200 500 (max) 25 3.3

10. The biological criteria were graphically presented to show the
ranges inside which the several specified effects might occur for yields
ranging from 1 kt to 100 Mt scaled for sea-level surface bursts.

11. To allow comparison of blast with other effects, doses of initial
nuclear radiation and fluxes of thermal radiation were computed and tabu-
lated, using the "free-field" scaling laws, for those ranges inside which the
specified biological blast effect could be expected. For the same purpose
the yield-range relationships for first- and second-degree burns and for
100 and 200 rem doses of initial nuclear radiation were compared graphi-
cally with those for several biological blast effects.
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12. The results of the study were briefly discussed, and though the
biological criteria employed were noted as tentative, incomplete and in
need of future extension and refinement, their application to nuclear ex-
plosions as a function of yield and range clearly indicated that blast
hazards must be regarded as a major cause of injury and fatality if there
ever were a nuclear war.

13. Also, the desirability of avoiding exposure to blast phenomena was
emphasized. Mentioned as possible alternatives for accomplishing this
were diplomatic, political, military and domestic approaches and policies
as well as highly important technical considerations.

14. Among the latter were the architectural and engineering principles
that made experiments possible at the Nevada Test Site indicating protection
up to 200 psi was technically feasible.
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